
 Name:

 Student #:

King Fahd University of Petroleum and Minerals

College of Computing and Mathematics
Department of Computer Engineering

COE 301 – Computer Organization (T212)

ICS 233 – Computer Architecture & Assembly Language (T212)

Final Exam – SOLUTION

Date & Time: Wednesday May 25, 2022 (12:30 PM – 03:00 PM)

 This is a CLOSED books, CLOSED notes exam.

 Answer ALL problems.

 Show all your work. NO partial credit will be given if work is not shown.

 Use of mobile phones, smart phones/watches, tablets is prohibited.

Problem Mark Score

1 5.0

2 5.0

3 11.0

4 14.0

5 5.0

6 10.0

7 6.0

8 13.0

9 7.0

Total 76.0

Select your section number:

 COE 301 – Section 1 (UTR 08:00 – Dr. Ayaz Khan)

 COE 301 – Section 2 (UTR 11:00 – Dr. Marwan Abu-Amara)

 ICS 233 – Section 1 (UTR 11:00 – Dr. Ayaz Khan)

 ICS 233 – Section 2 (UTR 10:00 – Dr. Ayaz Khan)

Page 2 of 12

Problem 1 (5 points): Floating-Point Addition

Given that A and B are single-precision floats, compute A - B. Use rounding to negative infinity.

Perform the operation using guard, round and sticky bits.

A = +1.100 1001 1100 0001 0100 1111 × 2-4

B = +1.011 0110 0100 1100 0001 0001 × 2-1

+
-

 1.100 1001 1100 0001 0100 1111
 1.011 0110 0100 1100 0001 0001

× 2-4

× 2-1

+
-

 0.001 1001 0011 1000 0010 1001 111
 1.011 0110 0100 1100 0001 0001

× 2-1

× 2-1

00.001 1001 0011 1000 0010 1001 111
10.100 1001 1011 0011 1110 1111

× 2-1

× 2-1

 10.110 0010 1110 1100 0001 1000 111 × 2-1

- 01.001 1101 0001 0011 1110 0111 001 × 2-1

- 1.001 1101 0001 0011 1110 1000 × 2-1

Problem 2 (5 points): Floating-Point Multiplication

Given that A and B are single-precision floats, compute A × B. Use rounding to nearest even. Perform

the operation using guard, round and sticky bits.

A = +1.100 1001 1100 0001 0100 1111 × 2-4

B = +1.010 0000 0000 0000 0001 0000 × 2-1

+
+

 1.100 1001 1100 0001 0100 1111
 1.010 0000 0000 0000 0001 0000

× 2-4

× 2-1

 Result exponent = (-4)+(-1) = -5

X
 1.10010011100000101001111
 1.01000000000000000010000

 110010011100000101001111
 110010011100000101001111
1.10010011100000101001111

 1.1111100001100011011101111111000001010011110000

+ 1.11111000011000110111011 11.. × 2-5

+ 1.11111000011000110111100 × 2-5

Page 3 of 12

Problem 3 (11 points): Single-Cycle Processor

The single-cycle datapath and control of a MIPS-like processor is shown below. However, it is limited to

the implementation of few instructions.

1) (3 points) Consider the execution of BNE Rs, Rt, label with the Zero flag equal to 0. Fill out

the control signal values for the BNE instruction in the table shown below.

Instruction RegDst RegWr ExtOp ALUSrc MemRd MemWr WBdata PCSrc

BNE Rs, Rt, label

(Zero = 0)
X 0 1 0 0 0 X 2

Page 4 of 12

2) Consider adding a new instruction, AISW, to the above datapath. The AISW instruction stands for “Add

Immediate and Store Word” and is an I-type that has a unique opcode. The addition is signed addition.

Instruction Format Meaning

AISW Rt, Rs, Imm16 Op, Rs, Rt, Imm16 Mem[Reg[Rt]] = Reg[Rs] + Imm16

(i) (5 points) Redraw the necessary/minimal changes to the above datapath to implement AISW, and

show any needed new control signal(s). The modified datapath should still support the execution

of all previously implemented instructions.

Draw only the modified parts and explain why they are needed.

(ii) (3 points) Identify any new control signal needed to implement AISW. Fill out both the existing

and the new control signals values for the AISW instruction in the table shown below. Note: Use

as many of the “New Control Signal(s)” columns as needed.

Instruction

Existing Control Signals New Control Signal(s)

RegDst RegWr ExtOp ALUSrc MemRd MemWr WBdata PCSrc MemAddrData

AISW Rt, Rs, Imm16 X 0 1 1 0 1 X 0 1

A
L
U

Rs

Rd

Ext

Rt

ALU result

clk

Data

Memory

Address

Data_in

Data_out

Registers

RA

RB

BusA

BusB

RW
BusW

1

0

Imm16

0

1

1

0

ExtOp

RegDst RegWr
MemRd

MemWr

ALUSrc

Zero

WBdata

MemAddrData

Page 5 of 12

Problem 4 (14 points): Performance of a MIPS program

(1) Consider a 5-stage MIPS processor with the following delay of each stage:

Instruction memory access time = 400 ps

Instruction Decode and Register read = 200 ps

Data memory access time = 400 ps

Register write = 200 ps

ALU delay = 100 ps

Ignore the delays of other components like multiplexers, wires, etc.

Assume the following instruction mix:

Instruction

Class
ALU Load Store

Taken

Branches

Not Taken

Branches
Jump

Frequency 40% 15% 10% 25% 5% 5%

a) (6 points) Compute the delay for each instruction class for the single-cycle processor.

Instruction

Class

Instruction

Memory

Decode and

Register Read
ALU

Data

Memory

Write

Back

Total

Delay

ALU 400 200 100 200 900

Load 400 200 100 400 200 1300

Store 400 200 100 400 1100

Taken Branch 400 200 100 700

Not Taken Branch 400 200 100 700

Jump 400 200 600

b) (1 point) Compute the clock cycle for the single-cycle processor

Clock Cycle = max (900,1300,1100,700,700,600) = 1300 ps

c) (1 point) Compute the clock cycle for the multi-cycle processor, given that each stage should

be completed in one clock cycle.

Clock Cycle = max (400,200,400,200,100) = 400 ps

d) (1 point) Compute the average CPI for the multi-cycle processor.

Average CPI = 0.4 4 + 0.15 5 + 0.1 4 + 0.25 3 + 0.05 3 + 0.05 2 = 3.75

Page 6 of 12

e) (1 point) Determine quantitatively if there is a speedup when using the multi-cycle processor.

Speedup = (1 1300) / (3.75 400) = 0.867 (multicycle is slower)

f) (1 point) Calculate the average CPI of a pipelined processor that has a base CPI = 1. The

pipeline stalls 1 cycle after each jump, and 2 cycles after each taken branch.

Pipelined CPI = 1 + 0.05 1 + 0.25 2 = 1.55

g) (1 point) Determine quantitatively if there is a speedup when using the pipelined processor

over the single-cycle processor.

Speedup = (1 1300) / (1.55 400) = 2.097 (pipeline is faster)

(2) (2 points) We want to improve the overall speedup in a program by a factor of 1.25. Assume that the

multiplication instruction accounts for 40% of the instructions. Compute the amount of speedup

needed in executing the multiplication instruction to achieve an overall speedup of 1.25 for this

program.

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 1.25 =
1

𝑓

𝑠
+(1−𝑓)

=
1

0.4

𝑠
+0.6

 ⇒ 𝒔 = 𝟐

 Multiplication instruction execution must be sped up by a factor of 2 to achieve the desired overall

speedup of 1.25. That is, the new multiplication instructions execution time should be 50% shorter

than the old multiplication instructions execution time.

Page 7 of 12

Problem 5 (5 points): Pipelined Processor Design
Consider the 5-stage pipelined processor datapath and control shown below. However, it is limited to the

implementation of few instructions.

Consider the following partial code:

...

LW Rt1,imm(Rs1)
SW Rt2,imm(Rs2)
...

Consider the scenario when Rt1 and Rs2 are two different registers while Rt1 is the same register as

Rt2, then the execution of the two instructions (LW followed by SW) causes a RAW data hazard that requires

stall cycles.

Modify the 5-stage pipelined processor by using proper forwarding to eliminate this specific data hazard

and the need for any stall cycles. Redraw the necessary/minimal changes to the above datapath, and show

in which pipeline stage(s) the changes are needed along with showing all newly needed control signal(s).

The modified datapath should still support the execution of all previously implemented instructions.

Draw only the modified parts and explain why they are needed.

ForwardB ForwardA

Rs

Rt

Hazard

Detect &

Forward

0

1

2

3

0

1

2

3

R

3232

clk

32

Rs
In

s
tr

u
c
ti
o

n

0

1

ALU result

32

0

1

Data

Memory

Address

Data_in

Data_out

32

R
d

4

A
L
U

Ext
Imm16

1

0

R
d

3

R
d

2
A

B

D
a
ta

D

Im
m

32

R
e
g

is
te

r
F

il
e

RB

BusA

BusB

RW BusW

RA

Rt

32

Rd

Main

& ALU

Control

Op

func

W
B

RegDst

E
X

ExtOp

ExtOp

ALUSrc

ALUOp

M
E

M

MemRd

MemWr

WBdata

RegWr RegWrRegWr

IF
 =

 I
n

s
tr

.
F

e
tc

h ID = Instruction Decode EX = Execute MEM = Memory Access

W
B

 =
 W

ri
te

 B
a

c
k

R

3232

ALU result

32

0

1

Data

Memory

Address

Data_in

Data_out

32

R
d
4

A
L
U

1

0

R
d
3

R
d
2

A
B

D
a

ta

D

Im
m

32

EX = Execute MEM = Memory Access

W
B

 =
 W

ri
te

 B
a

c
k

0

1

MemRAW

clk

Page 8 of 12

Problem 6 (10 points): Pipelined CPU

A hypothetical processor has a pipeline consisting of 6 stages as shown in the table below. The first row

in the table below shows the pipeline stage number, second row gives the name of each stage, and third

row gives the delay of each stage in nano-seconds. The name of each stage describes the task performed

by it. Each stage takes 1 clock cycle.

1 2 3 4 5 6

Instruction

Fetch

(IF)

Instruction

Decode

(ID)

Instruction

Execute 1

(EX1)

Instruction

Execute 2

(EX2)

Memory

Access

(MEM)

Register

Write back

(WB)

1ns 1.5ns 1.2ns 1.2 ns 2.5ns 1.1ns

The hypothetical 6-stage pipelined processor also implements a set of instructions to perform composite

operations (two operations on the same operands such that EX1 result = A op B and EX2 result =

EX1 result op B). The respective result (depending on the instruction) will then be forwarded to the

next stage.

a) (1 point) How much time (in ns) is required to fetch and complete one instruction if the six stages

were not pipelined?

Answer: 1+1.5+1.2+1.2+2.5+1.1 = 8.5 ns

b) (1 point) What is the pipeline clock cycle (in ns) if all the six stages are pipelined?

Answer: Clock Cycle = 2.5 ns (longest delay is for the MEM stage)

c) (1 point) How much time (in ns) is required to fetch and complete one instruction on the six-stage

pipeline?

Answer: 2.5 × 6 = 15 ns

d) (1 point) How many clock cycles are required to fetch and complete 17 instructions on this six-stage

pipeline? Assume that the pipeline is initially empty, and no stall cycles occur during the execution

of all 17 instructions.

 Answer: 6 + 16 = 22 cycles

Page 9 of 12

The following are two dependent instructions that are executed on the 6-stage pipeline:

 LW R5 = 8(R4) ; R5 = mem[R4+8]

 ADD R2 = R5, R7 ; R2 = R5+R7

e) (3 points) Assuming no forwarding circuitry is implemented in the 6-stage pipeline, fill the timing

diagram for the LW and ADD instructions, showing S for stall cycles, and a – for an unused pipeline

stage. How many stall cycles will occur in the pipeline during the execution of above two

instructions?

 1 2 3 4 5 6 7 8 9 10 11 12

LW IF ID EX1 EX2/- MEM WB

ADD IF S S S S ID EX1 EX2/- - WB

4 stall cycles.

f) (3 points) Assuming full-forwarding circuitry is implemented in the 6-stage pipeline, fill the timing

diagram for the LW and ADD instructions. Show S for stall cycles, a – for an unused pipeline stage,

and draw an arrow for forwarding data between stages. How many stall cycles will occur in the

pipeline during the execution of the above two instructions?

 1 2 3 4 5 6 7 8 9 10 11

LW IF ID EX1 EX2/- MEM WB

ADD IF ID S S EX1 EX2/- - WB

2 stall cycles.

Page 10 of 12

Problem 7 (6 points): Branch Predictions
We have a program core consisting of three conditional branches. The program core will be executed

millions of times. Below are the outcomes of each branch for one execution of the program core (T for

taken and N for not taken).

Branch 1: T-T-T-T-T

Branch 2: T-T-T-N-N-N

Branch 3: T-T-T-N-T-T-T-N-T

Assume that the behavior of each branch remains the same for each program core execution. For dynamic

branch prediction schemes, assume that each branch has its own prediction buffer and each buffer is

initialized to the same state before each execution. List the correct/wrong predictions and the accuracies

for each of the following branch prediction schemes in the tables below: (Hint: Accuracy = Total Correct

Predictions / Total Branches)

a) Predict branch “Not Taken”

b) 1-bit predictor, initialized to predict taken

c) 2-bit predictor, initialized to weakly predict taken

a) (2 points) Predict branch “Not Taken”

 Correct Predictions Wrong Predictions

Branch 1 0 5

Branch 2 3 3

Branch 3 2 7

Accuracy = 5/20 = 25 %

b) (2 points) 1-bit predictor, initialized to predict taken

 Correct Predictions Wrong Predictions

Branch 1 5 0

Branch 2 5 1

Branch 3 5 4

Accuracy = 14/20 = 70 %

c) (2 points) 2-bit predictor, initialized to weakly predict taken

 Correct Predictions Wrong Predictions

Branch 1 5 0

Branch 2 4 2

Branch 3 7 2

Accuracy = 14/20 = 70 %

Page 11 of 12

Problem 8 (13 points): Cache Memory

(1) Assume that a computer system uses a 16-bit address and a cache with 4K byte data size (not including

tag and valid bits) and a 32-byte block size.

a) (3 points) Assume the cache is organized as direct-mapped. Compute the number of bits in the

offset, index and tag fields.

Block offset bits = log2(32) = 5 bits

Index bits = log2(4K/32) = 7 bits

Tag bits = 16 – 5 – 7 = 4 bits

b) (2 points) Assume the cache is organized as 8-way set associative. Compute the number of bits in

the offset, index and tag fields.

Block offset bits = log2(32) = 5 bits

Index bits = log2(4K/8 32) = 4 bits

Tag bits = 16 – 5 – 4 = 7 bits

(2) (8 points) Assume a 2-way set-associative cache where each set has two blocks only (way 0 and way

1). Each cache block contains 16 bytes of data, and the cache is initially empty. The cache uses 16-bit

memory addresses divided into 4 bits of offset, 4 bits of index, and 8 bits of tag. The following

sequence of 16-bit addresses are sent to the cache: 0x321C, 0x329D, 0x521B, 0x3215, 0x5298.

For each addresses, identify the set index, tag (hexadecimal), way (0 or 1), and indicate whether there

is a cache hit or miss by filling the table shown below. Use the FIFO replacement policy.

Memory Address Set Index Tag Way (0 or 1) Hit or Miss

0x321C 1 0x32 0 miss

0x329D 9 0x32 0 miss

0x521B 1 0x52 1 miss

0x3215 1 0x32 0 hit

0x3915 1 0x39 0 miss

Page 12 of 12

Problem 9 (7 points): Cache Memory Performance

A processor runs at 3.0 GHz and has a CPI = 1.25 for a perfect cache (i.e., without including the stall

cycles due to cache misses). Assume that load and store instructions are 20% of the instructions. The

processor has an I-cache with a 10% miss rate and a D-cache with 5% miss rate. The hit time is 1 clock

cycle for both caches. Assume that the miss penalty is 30 ns for both caches. For each question, show your

work and calculations.

(a) (2 points) Compute the combined misses per instruction in the I-cache and D-cache.

Combined misses per instruction = 0.1 + 0.2 0.05 = 0.11

(b) (2 points) Compute the number of stall cycles per instruction and the overall CPI.

Miss penalty = 30 ns = 90 cycles

Memory stall cycles per instruction = 0.11 90 cycles = 9.9 cycles

Overall CPI = 1.25 + 9.9 = 11.15

(c) (2 points) Compute the memory access per instruction and the combined miss rate for both the I-cache

and D-cache.

Memory Access per Instruction = 1 (instruction fetch) + 0.20 (load and store) = 1.20

Combined Miss Rate = Combined Misses per Instruction / Memory Access per Instruction

Combined Miss Rate = 0.11 / 1.20 = 0.0917 = 9.17%

(d) (1 point) Compute the average memory access time (AMAT) in clock cycles.

AMAT = Hit Time + Miss Rate Miss Penalty = 1 cycle + 0.0917 90 cycles = 9.253 cycles

